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Abstract 

Coincidence-site lattice interfaces (CSLI) are fre- 
quently observed in crystals where a rigid framework 
remains invariant on both sides of the interface. They 
also seem to minimize the interface energy, for 
example, in metals where, empirically, the greater the 
density of the coincidence-site lattice the more stable 
the grain boundary becomes. Group-theory con- 
siderations allow the determination of all the possible 
interface operations which leave a given sublattice 
invariant. A classification of these CSLI with respect to 
the number of equivalent sublattices they leave in- 
variant is a guide for the prediction of the most stable 
type of interfaces with respect to the sublattice 

0567-7394/79/060885-10501.00 

considered. Examples from different types of crystals 
illustrate the method, which also applies for translation 
boundaries, twins and grain boundaries. 

Introduction 

It has often been verified that, in homogeneous crystals 
which present coherent boundaries, a fraction of the 
structure - which may be an atomic lattice or a partial 
set of atoms distributed on a lattice - remains undis- 
turbed when crossing the boundary. This idea was first 
proposed by Mallard and Friedel (see, for instance, 
Friedel, 1926) for explaining the merohedral (or 
penetration) twins and the twins formed by reticular 
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merohedry. The undisturbed lattice was thereafter 
called the coincidence-site lattice (CSL) and the inter- 
faces, which leave it invariant, the Coincidence-Site 
Lattice Interfaces (CSLI). 

A geometrical approach to the CSLI was given by 
Bollmann (1970) starting from the knowledge of the 
interface operation. It has been more or less success- 
fully applied, in particular, to the study of grain 
boundaries in metals. 

In the present paper, on the contrary, our starting 
point is the knowledge of the CSL; we shall derive a 
systematic method for characterizing and numbering 
all possible interface operations which leave the given 
coincidence-site lattice invariant. This method is able to 
include all the cases of CSLI as well as pure translation 
boundaries, twins by merohedry or by reticular 
merohedry, for any type of structure. 

The actual shape of the boundaries between the 
adjacent crystals, depending on energy and kinetic 
factors, is of no concern here, where only the 
geometrical relationships between the crystals are 
considered: we may define a geometrical space 
operator (air)  which relates the homologous points r I 

and r ~I between the two crystals (I) and (II) by: 

rXI = (alx) rt = ar I + "t, (1) 

where a is a point operation (inversion, rotation, 
rotation-inversion, reflection) and x the associated 
translation part (Seitz, 1936). However, every point r 'I 
deduced from r x by any (gl0 space operation of the 
space operation 

(alx)(glt) = (aglat + "t) (2) 

is equivalent to (alx) and defines the same boundary:  
the set of the equivalent operators (al x) (gl 0 associated 
with the same boundary is called the coset of the 
boundary (see, for instance, Aizu, 1970; Van Tendeloo 
& Amelinckx, 1974; Guymont,  Gratias, Portier & 
Fayard,  1976; Guymont ,  1978). In the following we 
shall denote this coset as { (al x)}. 

I. G e n e r a l  c o n s i d e r a t i o n s  

The structure of the crystal is assumed to be known. 

I. 1. Partial and total sublattiees 

Any structure may be described by the super- 
position of atomic lattices, the nodes of which are 
occupied by equivalent atoms. It is always possible to 
build up a 'sublattice'* by selecting a subset from 
among the Wyckoff  positions involved and which 
shows a translation group. Rigorously, any sublattice 

* For  simplicity, the term 'sublattice'  will always be used even if 
its translation group is not a subgroup of  the translation group of  
the structure. 

has to be built up from one Wyckoff  set so that the 
nodes are strictly equivalent. However, it is frequently 
useful to consider a 'pseudo-sublattice' built up from 
atoms of the same chemical species but belonging to 
different Wyckoff  sets. We shall include these pseudo- 
sublattices in our description and call these atomic 
sublattices as opposed to site sublattices when built up 
from only one Wyckoff  set. 

We may define two types of atomic - or site - sub- 
lattices: 

(i) a sublattice whose nodes are defined by all the 
positions of one (or more for the case of atomic sub- 
lattices) Wyckoff  set is called a total sublattice; 

(ii) if at least one Wyckoff  set is partially included 
in the sublattice, it will be called a partial sublattice. 

We shall illustrate these definitions by some well 
known examples in holohedral and hemihedral crystals. 
The notations used are those in International Tables 
for  X-ray Crystallography (1969). 

1.2. Examples ( Wyckoff, 1963) 

(a) Diamond 

Holohedral space group Fd3m. 

Carbon in 8(a): 0 '0 '0 /  + f.c.c. 
1 1 1 /  ~,~,~ ) 

The C atoms form two partial atomic sublattices 
translated from each other by i 1 ~ It is easily shown ~,~,~. 

that atoms located at 0,0,0 and 1 1 1 ~,~,~ cannot belong to 
the same atomic sublattice for there is no atom at i 1 1. ~,~,~. 

The 8(a) Wyckoff  set is only partially described by any 
one of these two partial atomic sublattices. 

(b) Rutile, TiO 2 

Holohedral, space group P42/mnm. 
Titanium in 2(a): 0,0,0; 1 1 1 ~,~,~. 

Oxygen in 4 ( f ) :  x,x,0; 2,2,0; 
3+ x , ½ - x ,  ½;½-x, ½+x, l, 

with x = 0.305. 
The Ti atoms form a total atomic sublattice (body- 

centred tetragonal) because all the positions of the 2(a) 
Wyckoff  set are included. On the other hand, the 
oxygen atoms define four equivalent partial atomic sub- 
lattices (primitive tetragonal). 

(c) Pyrite, F e S  2 

Hemihedral, space group Pa3. 
Iron in 4(a): 0,0,0; ~,:~,0,1 1 • :~,0,~,1 1. 0, :~,~.1 1 
Sulfur in 8(c): +(x,x ,x;  x + 3, ½ - x, 2; 
Sc, x + ½,½-x;½-x,~c,x+½), 
with x = 0.386. 
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The iron atoms form a total f.c.c, sublattice, while the 
sulfur atoms form eight partial primitive cubic sub- 
lattices. 

G o = Fd3m with the same basis, 
then 

GI = Fm3m n Fd3m = F43m. 

(d) F.c.e. metals 

Holohedral, space group Fm3m. 
Metal in 4(a): 0, 0, 0 + f.c.c. 
This is a trivial total f.c.c, lattice. 

(e) Building up o f  partial sublattices out o f  a sub- 
lattice 

In all the previous examples, we may build up an 
infinite number of partial  sublattices starting from a 
total or partial sublattice. For instance, in case (d) any 
subset of the 4(a) Wyckoff  set showing a translation 
group is a partial sublattice; for example, the subset 
generated by the vectors a / 2 [ l [ 0 ] ,  a /2[01[]  and 
a [ 111 ] defines a partial hexagonal sublattice. This sub- 
lattice is the CSL for the usual [111] mirror twin. 

II. Fundamental symmetry properties 

Any sublattice, considered alone, shows the point 
symmetry of a holohedral class consistent with the 
crystal metrics. It can then be described by a 
symmorphic  space group (taking into account its own 
translation group). 

The difference between partial  and total sublattices 
can be characterized as follows: all the elements of the 
space group G O of the structure leave any total sub- 
lattice invariant because G O is the invariance group for 
the Wyckoff  sets involved. On the contrary, a partial 
sublattice is transformed into an equivalent sublattice 
by some operators of G o. Let G R be the space group 
associated with a given sublattice R (total or partial); 
the symmetry operators which leave both R and the 
structure simultaneously invariant define a group G I 
which is the intersection of G o and GR: 

G z = G O tq G R. (3) 

This is obviously a common space subgroup of G O and 
G R for which the R sublattice is total because G z leaves 
R invariant. If R is total with respect to G o, G z is 
identical to G O which is then a subgroup ofG R (Fig. 1). 

Considering the previous examples, we find: 

(a) Diamond 

G R = Fm3m with (a,b,e) unit cell centred on a 
1 1 1 ~  carbon atom (0,0,0 or g,~,~j, 

(b) Rutile 

The Ti atoms form a total sublattice with space 
group 

G R = I 4 / m m m  with (a,b,e) unit cell centred on 0,0,0, 
G O = P42/mnm taken with the same basis is in fact a 

subgroup of G R so that: 

G z = P42/mnm f) 14 /mmm = P42/mnm = G o. 

The oxygen atoms form four partial sublattices, each 
one of group P 4 / m m m  centred on the atoms con- 
sidered. Only the symmetry operators passing through 
these atoms (which are centres of symmetry in 
P4/mmm)  have to be retained for building the inter- 
section group with P42/mnm centred on 0,0,0. For 
instance, the (x,x,O) atomic sublattice shows a centre of 
symmetry at (x,x,O) which is obviously not the case for 
P42/mnm. Hence, there will be no centre of symmetry 
in the intersection group Gz; the only symmetry 
elements which are kept are the site symmetry 
elements: two perpendicular mirrors m[l~01 and ml0011 
and the diad axis 211101 which is their intersection. Thus, 
one obtains the space group Atom2 with (e, b -- a, 
a + b) as unit cell: 

G z = A m m 2 ( ¢ ,  b - a, a + b). 

In this group, the oxygen position x,x,O now constitutes 
the complete 2(a) Wyckoff  set: 0 ,0 ,Z;  it is a total sub- 
lattice with respect to A ram2. 

(c) Pyrite 

The Fe atoms form a total atomic sublattice of group 
Fm3m, and then 

G z = G O = Pa3. 

The S atoms form eight partial atomic sublattices of 
group Pm3m, each one centred on the S atoms 

GR ~ p  

(ctl!)pj ~ Go 

(glt.)~ 
GR 1 Ga 2 . . . .  GR k 

\,',, ) Oo 

(a) Gt-_-'G, (b) G I c G 

Fig. 1. Group-subgroup relation (a) for total sublattices and (b) for 
partial sublattices of space group GR. P and k are the indices of 
G t in G R and G O respectively. For the partial sublattices the 
different G R space groups associated with the different equivalent 
Rj sublattices are conjugated by operators of Go: GRj = 
(glt)/GR,(glt)7 I. 
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considered. Here again, centres of symmetry disappear 
and only a triad axis is kept: for the ( x , x , x )  sublattice, 
for example, we obtain: 

G t = Pa3 f) P m 3 m  = R3.  

For this group R3, the ( x , x , x )  positions now form 
the complete 1 (a) Wyckoff set. 

(d) F.c.c. metal  

We consider the partial atomic sublattice previously 
c h o s e n ( § I  2e) :0 ,0 ,0 ; l  i . l 1. • ~,-~,0, 0,~,-~, 1,1,1. This sub- 
lattice has space group P 6 / m m m .  The intersection 
group with F m 3 m  is: 

G z = Fm3m(a,b ,c)  

fq P 6 / m m m  {(a - b)/2, (b -- ¢)/2, a + b + c} 

= e ~ m l  { ( a -  b)/2, ( b -  c)/2, a + b + c} 

with atoms now in 1 (a) Wyckoff positions. 

We then have to subtract from n, (l - 1) times the 
number of interfaces which simultaneously leave at 
least I equivalent sublattices invariant, I running from 2 
to k. Let there be R~, R 2, .... R t sublattices, to leave 
these invariant the interface operations have to belong 
simultaneously to GR,, GR2, ... GR,, i.e. to the inter- 
section group 

G 123.../= GR, n GR~ fl . . .  Iq GR,. (5) 

Since these interface operations must not belong to G o 
one obtains all these possible interface operations by 
decomposing G123... t in cosets of G O N Glz3...r Their 
number is the indexP123.../ofG 123../in Go tq G123...t: 

n123...l=P123...l-- 1. (6) 

By now considering all the possible combinations of 
the l invariant sublattices in the k equivalent ones we 
obtain the total number N t of different interfaces which 
leaves at least l sublattices invariant: 

N t =  Z Z "'" Z nj, A...j~. (7) 
it>it-I> >Jr 

III. Numbering and characterization of interface 
operations 

The total number of different possible interfaces is 
therefore 

III. 1. Number ing  

A twinned material exhibits several types of do- 
mains; the domains which are related by a symmetry 
operation of the space group of any one of them define 
a unique variant (i.e. if adjacent, these domains would 
reduce to a single crystal). The number of different 
possible interfaces bordering a given domain depends 
on the following: 

(i) to be crystallographically different, (with respect 
to G I) two interface operations have to belong to two 
different cosets of the decomposition of G R with respect 
to G i: the index p of G s in G~ gives the number of 
different interfaces which leave R invariant without 
being symmetry operations of the structure; 

(ii) R may also be transformed into any one of its 
equivalents. The number k of the equivalent sublattices 
(which is different from unity for partial sublattices) is 
equal to the index of Gn in G t (these two decom- 
positions will be explicitly performed in § 111.3). 

Thus, starting from one given domain, it is possible 
to build up 

n = k ( p -  1) (4) 

adjacent domains which leave any one of the sub- 
lattices equivalent to R, or R itself, invariant. 

However, n is not the actual number of the different 
types of possible interfaces because any interface 
leaving at least l sublattices simultaneously invariant 
(l < k) has here been taken into account I times (once 
per invariant sublattice). 

N = k ( p -  1 ) -  Z Z nj, j , -  2 Z Z Z nj, j,j~ 
J2>Jl J3> J2> Jl 

- ( l - l )  Y Y  ... Y n i, j , . . j  , . . . .  
Jr>Jr-l> >Jl 

- (k - 1) hi2 3...k, (8) 

where the summations run over the k partial equivalent 
sublattices. 

For the case of total sublattices, a group-subgroup 
relationship between G R and G o holds (k = I) which 
reduces relation (8) to 

N =  p -  1. (9) 

This is the usual number of different possible domains 
adjacent to a given domain when generated after a 
phase transition between two structures which are 
group-subgroup related (Guymont, Gratias, Portier & 
Fayard, 1976). 

It seems reasonable to assume that, if an interface 
with CSL exists in a crystal, the fault energy will be 
minimized (independently of the shape of the bound- 
ary) for those interfaces which leave a maximum of 
equivalent sublattices simultaneously invariant. These 
interfaces are found by building up the different inter- 
section groups (5). A necessary condition for an inter- 
face to leave I equivalent sublattices invariant is that at 
least one of the intersection groups is not a subgroup of 
the space group G O of the structure. Obviously, if one 
has an intersection of order I which is a subgroup of G o 
all further intersections are also subgroups of G o and do 
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not have to be considered. Practically, it is convenient 
to consider first the intersection defining a maximum 
number, say L, of invariant partial sublattices (i.e. all 
further intersections G I2. . .L,L+I a r e  subgroups of Go). 
There are C k possible different combinations of I sub- 
lattices among k sublattices. However, one given 
combination, say {j}, belongs to vfj I equivalent 
combinations with respect to the structure and then the 
initial C/k combinations are distributed among only J1 
different families with respect to the structure with 

& 

= c ,  (1o) 
j = l  

Let us denote by H~j~ the subgroup of G o which 
leaves the combination {j} of l sublattices globally 
invariant (Fig. 2). The index of G o in I-I~j I is the 
searched v~j I of relation (10): 

v~jl = index ofG o in H~j I. (11) 

Thus the number of interface operations leaving the 
combination { j} or its equivalents invariant is: 

111.2. Examples 

(a) Diamond 

G = Fd3m(a,b,c; 0,0,0); 
GR, = Fm3m(a,b,e; 0,0,0); 
Ge~ = Fm3m(a,b,e," 7~,2[,~)'I 1 1 

We first perform the intersection G 12 = G~, fl GR2. 
Because of the z ~ l  translation between the two ;~,;~,;~ 

groups the common symmetry elements reduce to the 
triad axis 3[11~ 1 and the mirrors m[li01, ml0li I and m[]0il, 
thus: 

G12 = R3m{(a + b)/2, (a + e)/2, (b + e)/2; 0,0,0}. 

But G12 is a subgroup of Fd3m: there are no possible 
interfaces which leave R~ and R 2 simultaneously in- 
variant (this is a trivial result because the structure 
here consists only of the superposition of these two sub- 
lattices). 

The total number of different possible interfaces is 
simply 

N = k (p  - 1) 

with 

N{jI = P~jI (P{jl - 1), (12) 
and 

w h e r e  P~jI has the same meaning as in (6). By 
performing the same calculation over the JL families we 
finally obtain the total number of interface operations then 
leaving L sublattices invariant: 

JL 
NL = ~ ~jl  ( P ~ j I -  1). (13) 

j=l 

The number Nt of interface operations leaving 
exactly l sublattices invariant is then 

Ji 

N l =  • V~j} (p~j}-- 1 ) - - ( l  + 1)N/+ 1 . . . . .  L N  L. (14)  
J = l  

This procedure considerably reduces the number of 
intersection groups to be determined in relation (8): we 
need only one intersection group per family. We shall 
illustrate the method in detail for pyrite and rutile. 

, i 

GR 1 G~R 2 -/; ~/GRL , GRL+I--" GR k 

G~ .__t ~ L  

%2_.'~_t tt~ 

Fig. 2. Group-subgroup relations for CSLI leaving L equivalent 
sublattices simultaneously invariant. The number of the equiva- 
lent combinations of L sublattices is given by the index Vz of 
Hol2... L in G o. 

k = index of FZ~3m in Fd3m = 2 

p = index of F43m in Fm3m = 2, 

N = 2 .  

(b) Rutile 

The case of the Ti sublattice is trivial because it is a 
total sublattice: 

N = p - 1  

with 

p = index of P42/mnm in I 4 / m m m  = 2. 

There is only one possible interface leaving the Ti 
sublattice invariant. 

We designate by 1, 2, 3, 4, respectively, the oxygen 
sublattices built up from x,x,O; ~,~,0; ½ + x, ½ -- x, ½ and 
½ - x, ½ + x, ½. These four sublattices obviously con- 
stitute a complete Wyckoff  set of P42/mnm and may 
therefore be used as a basis of representation of this 
group. This representation is isomorphic with a per- 
mutation group of four objects as shown in Table 1. 
One set {j} of i sublattices being given, we obtain the 
numbers vij J by counting the number of the different 
combinations which appear in the i considered columns 
of the permutation group. For  instance, the rep- 
resentation of P42/mnm at the 4 ( f )  Wyckoff  position is 
isomorphic with a permutation group of order eight. 
Let us consider the sublattice 1 alone. Any othei' sub- 
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lattices appear twice in the first column (this is obvious 
because the four sublattices are equivalent and the 
permutation group is of order eight), so that 1, 2, 3, 4 
belong to the same family and then 

v l = 4 .  

Moreover, C 1 = 4 so that there is only one family of 
one sublattice (trivial result!). We have then only to 
determine G 1 and Gol; also, I-i~ is trivial and reduces to 

G01. 
Let us now consider the couple (1,2): it exchanges 

with (3,4) only, and then 

v22 = 2. 

Taking now (1, 3) we obtain (1,4) (2, 3) and (2, 4), so 
that: 

v23 = 4. 

Remembering that Y v = C 2 we see that we have to 
consider two families only for finding the possible inter- 
faces which leave two sublattices invariant. We shall 
then build up (612,  Go12) and (G 13, G013)" 

The different intersection groups are given in Table 2. 
Finally we obtain: 

N4=0 
N3-- - -0  

2 N 2 ---- 1 7 2 2 ( P l  2 - -  1) + 1 7 1 3 ( P 1 3  - 1 ) =  2(1 - 1) 
+ 4 ( 2 -  1 )=  4 

N 1 = v l ( p ~ -  1 ) -  2 N  2 = 4 ( 4 -  1)-- 2 × 4 = 4. 

There are then four possible interfaces with two 
simultaneously invariant sublattices, and four possible 
interfaces with only one invariant sublattice. 

Table 1. Representation of  P42/mnm in the 4 ( f )  
Wyckoff position 

Permutations of the 
G o = P42/mnrn 4 ( f )  position* 

(11000) 1 2 3 4 }  
(mt001ll000) 1 2 3 
(mtlroll000) 1 2 4 3 / 
(2trio ]1000) 1 2 4 3/ 
(2tooq 1000 ) 214 ~} 
(il000) 2 14 
(miXloll000) 21  34} 
(2t~r011000) 2 1 3 
(mt0,011½,½,~) 3 4 12 / 

I 11 (2t~o011~,~,~) 3 4 1 2/ 
(42LooHIS,~, ~ 3 4 2 1 

J (A--;J I1 1 1"~ ~"to011'~,~,l~ 3 4 2 l 
(mt~o0jtS,~,~) 4 3 2 1 / 
(21oxo 115,5, 9 4 3 2 1 J 
I'A1 I111"~ 4 3  12~ 
~2[0011 ~ ~ "~ "~-J 

11 (4to0all~q,5) 4 3 1 2~ 

Table 2. Intersection groups for partial oxygen sub- 
lattices in TiO 2. 

The unit-cell vectors are expressed in the reference frame of the 
structure. X and Y denote respectively the [ 110] and [ 1 i0] direc- 
tions. The origins different from 000 are indicated. 

Number  i of  sublattices ' 
considered 1 2 

C~ 4 6 
N umber  J of  different sets {j } 1 2 
v(/} 4 4 2 

H00I  H01 = C2xmrm H0~ 3 = P2~nm Hot 2 = Cmxmvm 
(a + b , b -  a. e) (a, b. e) (a + b , b -  a . e )  

GOU} Go. = H0, Go~ 3 = Pm~ G m = C2xmvm 
(a, b, e) (a + b , b  - a , e )  

GO'~ G~ = P4/mmm GI3 = Pm2m Gl2 = Gin2 
(a,b,e',x,x,O) (a, b. e; x, 0, 0) 

P(jl 4 2 1" 
" No possLblc interlaces. 

This example illustrates fairly well the fact that the 
notion of CSL has to be generalized because the actual 
geometrical locus of zero displacement obtained for the 
interfaces with two invariant sublattices does not reduce 
to a single lattice; this treatment is presented elsewhere 
(Gratias, Portier & Fayard 1979). 

(c) Pyrite 

The Fe sublattice being total, we directly obtain: 

N = p - 1 with p = index of Fm3m in Pa3 = 8. 

T h e n  

N = 7 .  

For the S sublattices, we proceed in the same way as 
for ruffle. However, the workings are rather tedious so 
that we shall give here only the principal results. A 
careful examination of the intersection groups obtained 
for more than four sublattices shows that they all are 
subgroups of G o. Then N 8 = N 7 -- N 6 = N 5 = 0. 

For four sublattices, we obtain six different families 
characterized by the combinations: 

(1,4,5,8); v14584 = 6  

(1,2,3,4); 1712344 = 6 

(1,3,5,7); v13574 = 2 

(1,3,5,8); 1713584 = 8 

(1,2,3,5); vm54 = 24 

(1,2,3,6); 1712364 = 24, 

where the sublattices are labelled as follows: 

(1) x,x,x 

(2) :c,x,x 

(3) ½+ x , l - x , ~  

(4) ½-x ,½+ x,x 

(5) x, ½+ x, ½ - x  

(6) 2,½--x,  ½+ x 

(7) ½--x,x ,  ½+ x 

(8) ½+ x, Sc,½-x. 

* 4 ( f ) :  (I)  x,x,O, (2) ~,~,0, (3) ½ + x, ½ -- x, ½, (4) ½ -- x, 5 + x, 5. W e  c a n  verify that ~ v = C g = 70.  



D. GRATIA, S, R. PORTIER,  M. F A Y A R D  A N D  M. G U Y M O N T  891 

We have then to consider only six intersection 
groups. We find therefore: 

N4 = 6 ( 2 -  1) + 6(1 - 1) + 2(1 - 1) + 8(1 - 1) 

+ 2 4 ( 1 -  1 )+  2 4 ( 1 -  1 ) = 6 .  

For three sublattices we have only three families: 

(1,4,5); v]45 = 24 

(1,2,3); v]23 = 24 

(1,3,5); v~35 = 8. 

Also, Y v = C] = 56; by considering the three 
corresponding intersection groups we obtain 

N 3 = 2 4 ( 2 -  1) + 2 4 ( 1 -  1) + 8(1 - 1 ) - 4  x 6 = 0. 

There are no possible interfaces leaving three 
sublattices only invariant. For two sublattices we find 
three families: 

(1,4); v24= 12 

(1,2); v22 ---- 4 

(1,3); vZ3 = 12; Y v =  C Z=  28 

and 

N 2 =  1 2 ( 4 -  1 )+  1 2 ( 2 -  1 )+  4 ( 2 -  1) 

- 3 x 0 - 4  x 6 = 2 8 .  

Finally, there is one family only (v = k = 8) for one 
sublattice, then .... 

N ~ = 8 ( 1 6 - 1 ) - - 2 x 2 8 - - 3  x 0 - - 4 x 6 = 4 0 .  

(d) F.c.c. metals 

The number of equivalent hexagonal sublattices, k, is 
given by the index of G o = Fm3m(a,b,e): 
in 

G/= P 3 m l [ ( a -  b)/2, ( b -  c)/2, a + b + c] 

k = 12; 

p is the index of P6/mmm in P3m 1 (same unit cell): 

p = 2 .  

Moreover, it can be verified that all the intersection 
groups are subgroups of Go: the interfaces all leave only 
one partial sublattice invariant; their number is then: 

N =  k ( p -  1 ) =  12. 

111.3. Character&ation of  the boundary operations 

As we have said in the Introduction any interface is 
crystallographically characterized by a coset of 
operations denoted by (al x). Let us perform the two 
coset decompositions of G R and G O with respect to GI: 

GR =Gz + (alx)2 Gz + . . .  + (ctlX)p Gz (15) 

Go = G, + (glt)2 G, + . . .  + (glt)k Gr  (16) 

(alx)jG I represents the j t h  coset of equivalent 
operators which leave the R sublattice invariant but 
change the structure (in orientation and/or  trans- 
lation). Since any right multiplication of this coset by an 
operator of G O leaves the structure invariant, the 
complete j t h  coset with respect to the structure 
becomes: 

(alx)j G I G O = (al x)j G 0. (17) 

Looking for the other equivalent sublattices of R, we 
see from the second coset decomposition that they are 
deduced from R by: 

R t = (gl'l:)t G I R .  (18) 

To obtain their corresponding interface operations 
we have to conjugate (17) by the operations (18) which 
relate the equivalent sublattices; the expression for a 
CSLI operation is then: 

(glt) l Gi(al'c)jGT1(glt)l I -- {(glt)/}' {(all:)}j. (19) 

The associated interface leaves the lth sublattice 
invariant by the j t h  symmetry operation of this sub- 
lattice which does not belong to the space group of the 
structure. The symbol { . . . } '  denotes a coset with 
respect to G x only, because we have arbitrarily differen- 
tiated the k equivalent sublattices by choosing one of 
the equivalent reference frames for describing the 
structure. The general expression for a CSLI may be 
written as: 

{Go} (alx){Gol}, (20) 

where {Go} (of course {Go t} = {Go})denotes any 
operator belonging to G O . 

If we are only interested in the interfaces which leave 
several, say i, sublattices invariant the second coset 
decomposition (16) has to be performed with respect to 
Ho{tl only, because the further decomposition of Ho{i} 
with respect to Goli} gives no new interface operations. 

We are now able to calculate the total number of 
variants which may be generated in the bulk material. 
Let us consider a succession of domains belonging to 
the variants 1Io, V1,..., V t_ l, V I , . . . .  All the boundaries 
between any two succeeding domains are assumed to 
be CSLI. For instance, the interface (Vt_l, Vl) 
corresponds to a coset (10) where the operators are 
expressed in the reference frame of V t_ 1 or V t, say 
Vt - r  This coset now expressed in the reference frame 
of V o has to be conjugated by the (Vo, Vt_~) interface 
operation: 

( V l - l ,  Vt)o = ( V  O, Vt_l)Go(Ctl '~)iGol(Vo , V/_l) -1, (21) 

so that the operation between V o and V l expressed in V o 
is 

(Vo, Vt)o = (V0, Vt_,)Go (alx)tGo' (Vo, Vl_ l )  -1 
x (V 0, V,_,). (22) 
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By iterating this recurrent relation l -  1 times we finally 
obtain 

(Vo, Vt )=Go(alx) t  Go(al'OzGo... (al%)tGo 1. (23) 

Thus, the boundary operations between domains are 
obtained by sequential products of operators belonging 
to G O and to Gg. Generally, such products generate an 
infinite number of operators so that we obtain an 
infinite number of variants. 

The condition for the number of variants to be finite 
is that G g and G O be subgroups of a least-common 
space supergroup J. In fact, all the products of (18) 
remain in J and the total number of possible variants 
N v is then the index of the space supergroup J in G O (as 
in the case of variants generated from a group-sub- 
group phase transition): 

N v = index of J in G o. (24) 

Furthermore, it is important to emphasize that the 
boundaries defined in (20) are not always CSLI if the 
sublattice considered is partial. For total sublattices, J 
is identical to G R: the number of variants N v is always 
finite and is the index of G~ in G O: all the boundaries are 
CSLI because the invariant sublattice is the same in all 
variants. Let us illustrate these results with the previous 
examples. 

111.4. Examples 

(a) Diamond 

Go = Fd3m(a,b,e); GR = Fd3m(a,b,e); 

GI = F3~3m(a,b,e). 

We have previously shown that p = 2, k = 2 and 
then N = 2 with one invariant carbon sublattice. These 
two boundaries bordering a given variant are charac- 
terized by the cosets of (15) and (16): 

Fm3m = {(1 I000) + (m[ooqlOOO)}F43m, 
111 Fd3m = {(11000) + (m[ooul~,7~,7~)}F43m, 

so that the boundary operations are 

(mlooqlOOO)Fd3m and i i 1 (ml00q I~,~,~) (mlooulOOO)Fd3m. 

These may obviously be written as pure translation 
operations: 

I~,-~,a)Fd3m (m[oou IO00)Fd3m = (m[ool !1000) (m[ooz I i ~ 

( 1 1 1 i  = 17~,TbT~)Fd3m 

and 

111 IO00)Fd3m (1 I l l  (mr00111~,~,~) (mr001 ! = 17~,7~,-~)Fd3m. 

We obtain two pure translations with fault vectors: 

R1 [ I I  11 11 1 11 t~,~,--~rJ and 8 2 

(or any of their equivalent pure translation operators 
belonging to their cosets with respect to Go). 

. ,  

Moreover, Fm3m and Fd3m are common sub- 
groups of the space group 

d = Im3m(a/2 ,  b/2, e/2), 

and the total number of variants is the index of 

Im3m (a/2, b/2, e/2) in Fd3m (a,b,e). 

Because there are two types of CSLI and four types 
of variants here we may obtain boundaries [see 
boundaries (V 0, V3) o r  (V  1, V 2) in Fig. 3] which are not 
CSLI; for instance: 

(I 1 1 1  ----(l ' '  ''~ (110,0,½) I~,~,~)(1 ~ ~ ~,~,~1 ~,~,'~1 = 

does not leave any carbon sublattice invariant. 
Though we are not able to describe the geometrical 

shape of the boundaries with this approach we may 
assume that the (110,0,½) type of boundary shows a 
higher fault energy than the (1 1 i ~_ 1~ ~,~,-~; ones. m way of 
decreasing the (110,0,½) boundary surfaces is for the 
intersections between CSLI to present an even number 
of adjacent boundaries. Unfortunately no observations 
have been made on possible translation faults in 
diamond. 

(b) Rutile 

The Ti sublattice needs only the decomposition of G R 
with respect to Go: 

14/mmm = {(11000) + (l1½,½,½)}P42/mnm. 

We obtain a unique possible CSLI which is a pure 
translation, with a fault vector 

R = I ~  1 l ]  t~,~,~]. 

For the oxygen sublattices, we shall consider only 
the most probable CSLI, i.e. those which simul- 
taneously leave two partial sublattices invariant. We 

V 

I 
(~ IV,A) 

V 

V1 

_V2 
- - X 

, l'("'4"")-L . , 

t ".,, / ? I 

i / \ i , 

I- -] : " ,..-. 
v (,1',.'~. % v A 

, j (,I~,,,,A, .1 x 
A • 

V3 

Z - v o t u e :  * 0," A 1 / 4 i  x l / 2  . ! 3 / 4  

Fig. 3. The  four possible variants for diamond with CSLI  (V o - V 1, 
V 0 - V2): here they are pure translation boundaries.  
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then perform the two coset decompositions of G 13 with 
respect to G013 and G O with respect to Ho13: 

P42/mnm(a,b,c; 0 0 0 ) =  [(11000) + (mtllOll000)] 
1 1 1  x [(11000) + (mtl0011~,~,~)] 

x P21x ny m z (a,b,¢; 000), 
Pmx2ymz(a,b,c; x,0,0) = { (11000) + (mtlo0112x,0,0)} 

× Pmz(a,b,e; 000). 

The translation 2x,0,0 associated with the mirror 
mr100 j appears because of the change (x,0,0) of the 
origin of Pm with respect to Pm2m: by a translation p 
of the origin, any space operator (glt) transforms into 
(glt  + g p -  p). 

If we now perform the different products (19), we 
obtain in all cosets at least one pure translation 
operation; for example: 

1 1 1  (mtlooll~,~,~)(mtlooll--2x, O,O ) = (11½ + 2x, ½, ½), 

with x ___ 0-305. The fault vector is: 

R ~_ -~[ 1.5.51. 

This result is in agreement with the careful ex- 
perimental determination of Van Landuyt,  de Ridder, 
Gevers & Amelinckx (1970). Moreover, there is no 
common supergroup between G and G R because the 
value of x is not a submultiple of the unit-cell 
parameter a. 

This generates an infinite number of variants. The 
products of any two CSLI operations not being a CSLI 
operation, we see that the minimization of the total fault 
energy in the crystal is obtained for parallel interfaces, 
i.e. if the CSLI do not intersect. In fact, the faults 
observed in rutile correspond to a shear structure where 
the CSLI are parallel walls. 

(c) Pyrite 

Fe sublattice: since this sublattice is total only the 
decomposition of G R with respect to G O is required: 

Fm3m = {(11000) + (1 I~,~,0)1 1 + (1 12,0,2)1 1 

+(11 11 0,:~,~) (11000) + (mtllojlOOO)}Pa3. 

We obtain three pure translation boundaries with 
1 1 fault vectors [~,~,0] and four merohedral twins: 

I~,~,0), (mtlloll~,0,~) and (m[11o11000); (mtllO 1 1 1 • 1 1 

10,~,~). (mtuo] i 1 
The number of variants is the index of Fm3m in Pa3: 

N v =  8. 
Finally, as for all cases of total sublattices, the inter- 

sections of any CSLI always generate another CSLI. 
These merohedral twins and translation boundaries in 
pyrite have recently observed (Donnay,  Donnay & 
Ijima, 1977). 

S sublattice: as for the case of rutile, we restrict our 
example to the case interfaces leaving four sublattices 

invariant. The groups involved are 

6 1458 = Pmy(a,b,c; 0,x,0) 

G01458 = Pl (a ,b ,c ;  0,0,0) 

and 

['~ 0 1 4 5 8  = Pax2 ly cz(a,b,c; 0,0,0). 

We obtain the following coset decompositions: 

Pa3(a,b,e;  000) = ({ 11000) + (il000)}{(11000) 

+ (3t11111000) 

+ (3~11111000)}Pax21~ cz(a,b,c; 000) 
Pmy(a,b,e; 0 , x , 0 ) =  I(11000) + (ml01oll0,2x,0) 

× P l (a ,b ,c ;  000). 

As for the case of rutile all cosets of the different 
products (19) contain one pure translation operator: 

1 1 (m[010110,~,~) (mt010110,2x,0) = (110, ½ -- 2x, ½). 

The fault vector is then (x = 0.386) 

R ~_ [0,--0.27,½] 

and its equivalents with respect to Pa3. 
This result is to be compared with the experimental 

determination of Fagot,  Levade, Couderc & Bras 
(1978) who did not find the ½ component along z. 
However, the extinction condition l = 2n of Pa3 for the 
hOl planes, which still applies in two-dimensional 
electron dynamical  diffraction (Gjonnes & Moodie, 
1965), leads to a possible half-integer value along z of 
the R vector that the authors have not considered. 

(d) F.c.c. metals 

We have to decompose Fm3m and P6/mmm with 
respect to P3ml.  By expressing the operators in the 
cubic reference frame we obtain: 

P6/mmm = {(11000)+ (2tll l l1000)}P3ml 

Fm3m {(11000)+ 1 11 (1 i 1 (11 11 I~,~,0) + I~,0,~) + = 0 ,~ ,9}  

× {(11000) + (m[100]1000) 

+ (mtllo] 1000) } P3m 1, 

so that the 12 CSLI are defined by binary axes along 
( 111 ) but located at different positions in the unit cell. 

Since G O and GR have no common crystallographic 
space supergroup the number of variants is infinite. 

IV. The particular case o f  total sublattices 

The general method proposed here is greatly simplified 
if the invariant sublattice is total because G z is then 
identical to G o, so that G R is a supergroup of G o. It 
follows that the number of variants is the index of G O in 
G R • 
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If the structure has a holohedral symmetry class, the 
CSLI operations all reduce to pure translations; their 
number is equal to the sum of the multiplicity of the 
Wyckoff set(s) which defines the sublattice divided by 
the Bravais cell multiplicity of the structure. The 
boundary operations have the form: 

(IlTR), 
where T R are the translations of the sublattice, reduced 
modulo the primitive cell of the structure. 

If the structure is not holohedral the decomposition 
of G R with respect to G O may be performed in two 
steps: 

(i) decomposition of G R with respect to an intermedi- 
ate Translationengleich subgroup G'. 

(ii) decomposition of G' with respect to G O 
(Klassengleich). 

The first decomposition generates only pure orien- 
tation operations referred to as" 

(hRI000), 

in the reference frame centred on any node of the R 
total sublattice. The second decomposition generates 
only pure translation operations so that the general 
form of CSLI may be written 

(hR 1000)(IlTR) = (hRlh R Tk). 

The number of variants is equal to the sum of the 
multiplicities of the Wyckoff set(s) concerned, divided 
by the multiplicity of the Bravais cell of the structure 
and multiplied by the index of the point group 
associated with the structure in the holohedral sym- 
metry class of the crystal system. 

For instance, we find that for the Ti sublattice in 
rutile 

N e = 2 X  1 = 2 .  

The Ti are in the 2(a) Wyckoff positions (multiplicity 
2) and the Bravais lattice of the structure is primitive 
(multiplicity I). 

For the Fe sublattice, in pyrite, we find 

N v = 4 X 2 x  1 = 8 .  
The Fe atoms are in the 4(a) Wyckoff positions 

(multiplicity 4); the index of m3m in m3 is 2 and the 
Bravais lattice of the structure (Pa3) is primitive 
(multiplicity 1). 

V. Conclusions 

The method presented here only requires knowledge of 
the invariant sublattice (as far as this sublattice is 
defined as a subset of the Wyckoff positions of one type 
of atom involved in the structure). 

There is no formal difference between pure trans- 
lation boundaries and twins because the translation 
subgroups of the space groups of the structure and of 
the sublattice do not play a particular role in the deter- 
mination of the CSLI with respect to the other 
symmetry operators. 

Furthermore, it should be noted that all the bound- 
ary operations which leave a site sublattice (built up 
from only one Wyckoff set) invariant are always 
translation reducible (their cosets contain pure 
rotations or pure reflections) since they leave at least 
one site, of the same type, invariant for the two 
crystals. This is the case in our examples; only site sub- 
lattices have been considered. The translation bound- 
aries we have obtained may all be replaced by pure 
point-symmetry operators. 

This property disappears for the case of atomic sub- 
lattices built up from several different Wyckoff sets, 
because here some CSLI exchange different Wyckoff 
positions between the adjacent crystals. Hence, it is 
possible to obtain mixed boundaries (Wondratschek & 
Jeitschko, 1976; Guymont, Gratias, Portier & Fayard, 
1976). 

A major advantage of the present group approach is 
that one obtains all the possible boundary operations 
classified with respect to the number of equivalent sub- 
lattices they leave invariant. This includes the case 
where an interface leaves not only one sublattice but a 
fraction of the structure invariant (see, for example, the 
case of rutile), i.e. certain substructures which are not 
reducible to one atom per unit cell. A detailed study of 
the interfaces leaving a substructure (built up from 
different types of atoms) invariant is discussed in a 
following paper (Gratias, Portier & Fayard, 1979). 
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